作者	赖豪杰
中文题名	生物膜泥沙输移规律及潜在的环境效应研究
英文题名	Biofilm-coated sediment transport and its potential environmental effects
中文关键词	细颗粒泥沙,生物膜,絮凝,三维模型,微生物群落
英文关键词	Fine-grained sediment, Biofilm, Flocculation, Three-dimensional model, Microbia 1 community
中文文摘	细颗粒泥沙普遍存在于河流、湖泊和海洋等天然水体中,水中大量微生物往往会附着于泥沙 颗粒表面,并生长、发育和增殖形成生物膜结构,生物膜是由微生物及其胞外聚合物(EPS) 构成的复杂微型生态系统。目前生物膜已广泛存在于天然水环境中,传统泥沙研究常常基于 干净沙而忽略了生物过程的影响。生物膜在泥沙表面生长后不仅显著改变了泥沙输移过程, 还通过其吸附解吸和微生物分解等过程对水环境产生影响。本文从生物膜与泥沙的相互关系 出发,研究了生物膜对泥沙输移的影响及其潜在的生态环境效应。综合考虑附着态生物膜和 游离态 EPS 长锤的作用,改进了生物膜泥沙絮凝生长模型,并利用改进的 DLA 和 DLCA 模型, 研究生物膜对泥沙絮体形态的影响。两个模型都表明附着生物膜含量越高,絮体的回转半径和 空隙率明显增加,而分形维数无明显变化;在游离态 EPS 长锤作用下,絮体的回转半径和 空隙率都显著增大,分形维数明显减小。但 DLCA 模型得到的变化幅度明显小于 DLA 模型, 尤其是在游离态 EPS 长锤作用下。通过生物膜影响泥沙颗粒的形貌、密度、粒径等基本特征, 修正了泥沙沉降、起动及床面形态和阻力的计算方法,构建了三维生物膜泥沙全沙输移数学 模型及其边界条件。利用室内直槽和扩展槽实验对模型进行了验证,研究发现:相同水流条 件下,生物膜泥沙形成的床面,其形态尺度和床面阻力都减小,断面平均流速略微增大,近 床紊动能降低:且生物膜泥沙的悬沙浓度减小,床面泥沙稳定性增强,侵蚀量明显降低。结 合生物膜泥沙形成的床面,其形态尺度和床面阻力都减小,断面平均流速略微增大,近 床紊动能降低:且生物膜泥沙的悬沙浓度减小,床面泥沙稳定性增强,侵蚀量明显降低。结 合生物膜泥沙形成的床面,其形态尺度和床面阻力都减小,断面平均流速略微增大,近 床紊动能降低:1生物膜水沙的悬沙浓度减小,床面泥沙稳定性增强,侵蚀量明显降低。结 合生物膜泥砂带成的床面,其形态尺度和床面阻力都减小,断面平均流速略微增大,近 家板能力,不完了、全物膜子长模型和生物膜中微生物群落结构分析,研究了长江三峡 库区生物膜对磷的埋藏影响,及长江干流微生物群落变化对碳氮循环等环境功能的影响。研 究表明:(1)库区床面生物膜的平均生物量和磷浓度与泥沙淤积量呈负相关,多年累积生物 量和磷浓度与淤积量和淤积速率都有关,冲淤速率是影响床面生物膜生物群落组成有 明显变化;(3)长江干流底泥微生物群落的有机碳分解和硝化作用沿程变化较小,而库区有 机污染物降解和反硝化作用强于坝下。
外文文摘	Fine-grained sediment is a complex assemblage of various minerals and exists ex tensively in the river, lake and reservoir. Fine-grained sediment serves as an excellent substratum for microorganism colonization, resulting in the formation and growth of biofilms on sediment surfaces. A biofilm is a complex structure consisting of living microorganisms and their metabolic products known as extra cellular polymeric substances (EPS), and the formation of biofilms has been fou nd ubiquitously distributed in aqueous ecosystems. However, most models for sed iment transport are based on experiments using clean sediment without biologica 1 materials. The development of biofilms can influence sediment properties (e. g., architecture, density, morphology and size gradation) and their transport p rocesses, but also has potential environmental effects due to the absorption an d microbe decomposition of biofilms. This paper aims to explore the roles of bi ofilms on sediment transport and the potential environmental effects in aqueous ecosystems. The improved flocculation evolution model for biofilm-coated sedime nt is presented with a comprehensive consideration of both the attached biofilm s and dissociative long-chain EPS, based on the conceptual model of sediment bi oflocculation. Then, the diffusion-limited aggregation and diffusion-limited ag gregation cluster model are developed to study the influences of biofilms on se diment bioflocculation. Both the two models show that the turning radius and po rosity of the floc increase and the fractal dimension of the floc have no obvio

	us change with the increase of attached biofilm content, while the turning radi
	us and porosity of the floc increase significantly and the fractal dimension of
	the floc decrease with the role of long-chain EPS. Moreover, the effects of at
	tached biofilms and long-chain EPS are more obvious in the DLA model.A three-di
	mensional model of hydrodynamics and bio-sediment transport is proposed with a
	comprehensive consideration of the biofilm effects. In this model, the main pro
	perties, bedform dynamics and transport characteristics for bio-sediment are co
	mprehensively analyzed to explore the distinctions between the transport of cle
	an sediment and bio-sediment. The proposed model is validated by the measured f
	low and sediment transport in the flume experiments, and the results show that
	the simulated results agree well with the measurements. Then, the proposed mode
	l is applied to evaluate the biofilm effects on the hydrodynamic characteristic
	s and sediment transport. It shows that the bedform dimensions and bed resistan
	ce decrease due to an enhanced stabilization after the biofilm growth under the
	same flow condition, resulting in an increase of mean velocity and a decrease
	of turbulence intensity near the river bed. Moreover, the suspended sediment co
	ncentration and erosion quantity of bio-sediment are significantly smaller than
	those of clean sediment under the same flow condition. The dynamic model of bio
	film growth is developed to represent the influences of sediment erosion and de
	position. The biofilm effects on the phosphorus accumulation in the Three Gorge
	s Reservoir (TGR), and the change of microbial community and corresponding micr
	obial function along stem stream of Yangtze River are studied based on the mode
	1 of hydrodynamics and sediment transport, developed biomass dynamics model and
	the analysis of microbial community structure. It shows that (1) the spatial d
	istribution of mean concentration of biofilms and phosphorus in the sediment is
	negatively correlated with the sediment deposition, while the spatial distribu
	tion of the cumulative amount of biofilms and phosphorus is affected by both th
	e sediment deposition and the deposition velocity in TGR. (2) The microbial ric
	hness and diversity in TGR are greater than those at downstream of the dam. Mea
	nwhile, there is an obvious change in the microbial community composition after
	the Three Gorge Dam construction. (3) The functions of decomposition of organi
	c carbon and nitrification change little along stem stream of the Yangtze Rive
	r, while the functions of denitrification and organic pollutants degradation in
	TGR are greater than those at downstream of the dam.
答辩日期	2019. 05. 30